該技術的推動力主要來源于兩側膜的靜壓力,工作壓差一般為1,5MPa,能夠截留大分子、離子、顆粒、鹽類等多種物質,清除率通常可以達到95%,甚至更高,在電廠化學水處理應用中,反滲透技術是全膜分離工藝的第二道工序,起著承上啟下的重要作用,既是對道工序超濾技術的進一步處理,也是為后一道工序的深度脫鹽奠定基礎。
原水經兩個活性炭濾芯(一個顆粒活性炭和一個燒結活性炭)和一個PPF溶液噴霧濾芯預過濾后,再將預過濾后的水加壓通過孔徑為萬分之一微米的RO(reverseomosis)膜和果殼(椰殼)制成的載銀活性炭,因此,應該使用什么樣的水處理設備,采用什么樣的先進技術,才能使水處理設備有效運行,為人們提供純凈優質的水資源,是民生急需解決的關鍵問題。水處理設備的選擇原則,應以保障人民用水安全為原則,根據安全可靠的原則,電廠運行時,蓄水池中的水首先通過原水泵輸送到多介質過濾器,原水中的大顆粒通過活性炭過濾器過濾到過濾層外,使其呈現出清澈的狀態;然后,它們繼續通過超濾,然后進入反滲透裝置去除其二氧化碳并進入淡水箱;在二次反滲透的作用下,進入下水箱,通過脫鹽裝置,給鍋爐補水。
首先,膜水處理技術在電廠水處理中具有優勢,與傳統的化學水處理設備相比,整個膜水處理系統操作維護方便,更有利于電廠化學水處理自動化的實現,整個過程采用物理手段,不使用任何化學試劑,保證了過濾水的質量,實現了自動控制,降低了人工操作的出錯率,降低了成本,全膜分離技術在電廠化學水處理中的應用,可以獲得更純凈、性能更穩定的水。如果生產中不使用濃堿或濃酸,就不會產生污染,使得化學水處理零排放,RO反滲透是一種在不添加任何化合物的情況下過濾原水(物理方法)的機器(也稱為終端凈水設備),在電廠化學水處理中,采用全膜分離技術可以提高水處理效率,不占用太多面積,降低設備能耗,在電廠化學水處理中,全膜分離的工藝流程依次為超濾技術、反滲透技術和電脫鹽技術。