當一個氣動調節閥和電動調節器配套使用時,可采用電一氣閥門定位器或電一氣轉換器,壓縮空氣的供氣系統可以和用于全氣動的調節系統一樣來考慮,在調節理論的術語中,調節閥既有靜態特性,又有動態特性,因而它影響整個控制回路成敗,靜態特性或增益項是閥的流量特性,它取決于閥門的尺寸、閥芯和閥座的組合結構、執行機構的類型、閥門定位器、閥前和閥后的壓力以及流體的性質,動態特性是由執行機構或閥門定位器一執行機構組合決定的。
調節閥安裝位置應遠離振動源,如不可避免,應采取預防措施。 這種整個調節閥振動,在還未達到共振的情況下,調節閥基本上還是能隨外給定信號而進行調節的。因為外給定信號對閥芯的相對位移,并不因整個調節閥的振動而改變或改變很小,其原因在于它們是一個整體。 調節閥兩端的截止閥猛開或猛關,會使急劇流動的波測介質產生強烈的反射沖波,反射波沖擊調節閥芯。當這個力大于膜片對閥芯向下的壓力時,會使閥芯上移,產生振動,尤其是在小信號情況下,由于預緊力較小,更易使閥芯產生顫動。
調節閥開度太小,使調節閥前后差壓太大,至使在節流口處流速zeng大,壓力迅速減小。若此時壓力下降到液體在該溫度下的飽和蒸氣壓時,可使液體產生氣化,形成閃蒸,生成氣泡、氣泡破裂時形成強大的壓力和沖擊波,產生氣錘,這個壓力一般可達幾十兆帕。氣錘沖擊閥芯,使閥芯形成蜂窩壯麻面并使閥芯振動。 一般閥芯振動原因大致如下:調節器輸出信號不穩定。快速的忽高忽低的變化,此時如閥門定位器靈敏度太高,則調節器輸出微小的變化或飄移,就會立即轉換成定位器輸出信號很大。致使閥振蕩。