空格可用下劃線代替,例如“H2O_O2,gjf”,“Graphene_NH3,gjf”,接下來,我們以上圖為例介紹Gaussian輸入文件(,gjf)中所包含的信息,主要涉及到5部分內容:,計算資源分配及輸出結果保存部分,倘若我們要對一個Fe3+進行模擬,但并不知道自旋多重度應取何值,且不擅長或無法通過軌道理論進行判斷,那么可以通過計算Fe3+在不同自旋多重度下的單點能的方式來尋找其基態(tài)自旋多重度。
任務的計算方法和內容部分,“#”指以正常形式輸出計算結果,若希望以更為詳細的形式輸出結果,可寫作“#P”,若希望以精簡形式輸出,可寫作“#T”,“b3lyp”決定本次模擬采用DFT方法并選用b3lyp泛函進行計算,泛函應根據(jù)實際需要進行選擇,此處給出的較為通用且精度尚可的雜化泛函,例如Summary中包含了當前幀的基本信息(電子自旋、能量等),Optimization可顯示優(yōu)化過程中體系的能量和平均受力(RMS)變化情況。
輸入文件:文件后綴名通常為,gjf,包含模擬任務的計算資源分配(核數(shù)、內存使用情況)、計算方法和精度、任務要求及計算模型等信息,輸出文件:文件后綴名通常為,out或,log,除輸出作為計算結果的結構模型、軌道、密度矩陣、電荷布局等信息外,還包括了部分計算過程中輸出信息,對于大多數(shù)含有過渡金屬的結構、自由基結構、激發(fā)態(tài),如二茂鐵、基態(tài)氧分子、羥基自由基等,均為開殼層體系,自旋多重度大于1,需做進一步判斷。